American fern inspires new energy storage prototype

RMIT Universtity researchers have been inspired by an American fern to develop a groundbreaking prototype.

The new type of electrode could boost the capacity of existing integrable storage technologies by 3000 per cent.

The graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, which could lead to self-powering smart phones, laptops, cars and buildings.

The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries.

Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

Leader of theย Laboratory of Artificial Intelligence Nanophotonicsย and associate deputy vice-chancellor for research innovation and entrepreneurship at RMIT, Professor Min Gu, said the new design drew on natureโ€™s own genius solution to the challenge of filling a space in the most efficient way possible โ€“ through intricate self-repeating patterns known as โ€œfractalsโ€.

โ€œThe leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant,โ€ Professor Gu said.

โ€œOur electrode is based on these fractal shapes โ€“ which are self-replicating, like the mini structures within snowflakes โ€“ and weโ€™ve used this naturally-efficient design to improve solar energy storage at a nano level.

A western swordfern leaf magnified 400 times, showing the self-repeating fractal pattern of its veins.

โ€œThe immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity โ€“ 30 times more than current capacity limits.

โ€œCapacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release โ€“ for when someone wants to use solar energy on a cloudy day for example โ€“ making them ideal alternatives for solar power storage.โ€

Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage.

The fractal design reflected the self-repeating shape of the veins of the western swordfern,ย Polystichum munitum, native to western North America.

Lead author PhD researcher Litty Thekkekara said because the prototype was based on flexible thin film technology, its potential applications were countless.

โ€œThe most exciting possibility is using this electrode with a solar cell, to provide a total on-chip energy harvesting and storage solution,โ€ Litty said.

โ€œWe can do that now with existing solar cells but these are bulky and rigid. The real future lies in integrating the prototype with flexible thin film solar โ€“ technology that is still in its infancy.

โ€œFlexible thin film solar could be used almost anywhere you can imagine, from building windows to car panels, smart phones to smart watches.

“We would no longer need batteries to charge our phones or charging stations for our hybrid cars.

โ€œWith this flexible electrode prototype weโ€™ve solved the storage part of the challenge, as well as shown how they can work with solar cells without affecting performance.

“Now the focus needs to be on flexible solar energy, so we can work towards achieving our vision of fully solar-reliant, self-powering electronics.โ€

Previous articleโ€˜Five-Minute Ruleโ€™ to fix Australiaโ€™s energy crisis
Next articleShell seals more east coast domestic gas deals